Directing visceral white adipocyte precursors to a thermogenic adipocyte fate improves insulin sensitivity in obese mice
نویسندگان
چکیده
Visceral adiposity confers significant risk for developing metabolic disease in obesity whereas preferential expansion of subcutaneous white adipose tissue (WAT) appears protective. Unlike subcutaneous WAT, visceral WAT is resistant to adopting a protective thermogenic phenotype characterized by the accumulation of Ucp1+ beige/BRITE adipocytes (termed 'browning'). In this study, we investigated the physiological consequences of browning murine visceral WAT by selective genetic ablation of Zfp423, a transcriptional suppressor of the adipocyte thermogenic program. Zfp423 deletion in fetal visceral adipose precursors (Zfp423loxP/loxP; Wt1-Cre), or adult visceral white adipose precursors (PdgfrbrtTA; TRE-Cre; Zfp423loxP/loxP), results in the accumulation of beige-like thermogenic adipocytes within multiple visceral adipose depots. Thermogenic visceral WAT improves cold tolerance and prevents and reverses insulin resistance in obesity. These data indicate that beneficial visceral WAT browning can be engineered by directing visceral white adipocyte precursors to a thermogenic adipocyte fate, and suggest a novel strategy to combat insulin resistance in obesity.
منابع مشابه
Effect of blockade of neuropeptide Y receptor on aortic intima-media thickness and adipose tissue characteristics in normal and obese mice
Objective(s): Atherosclerosis is an important risk factor for coronary heart disease. Neuropeptide Y (NPY) and its receptors, located in peripheral tissue such as white adipose tissue, have been linked to obesity and fat storage. The role of NPY in atherosclerosis has not yet been fully studied, so this study was conducted to further investigate the effect of BIIE 0246, an NPY receptor antagoni...
متن کاملGhrelin Does not Alter Aortic Intima-Media Thickness and Adipose Tissue Characteristics in Control and Obese Mice
Objective(s): Atherosclerosis is a chronic immune-inflammatory disease that generally leads to ischemic heart disease. Ghrelin has several modulatory effects on cardiovascular system. In this study, we investigated the effect of ghrelin on aortic intima-media thickness, size and the number of adipocyte cells in obese and control mice. Materials and Methods:This study was conducted on 24 male C...
متن کاملFAK signalling controls insulin sensitivity through regulation of adipocyte survival
Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion...
متن کاملEndothelial cells from visceral adipose tissue disrupt adipocyte functions in a three-dimensional setting: partial rescue by angiopoietin-1.
During obesity, chronic inflammation of human white adipose tissue (WAT) is associated with metabolic and vascular alterations. Endothelial cells from visceral WAT (VAT-ECs) exhibit a proinflammatory and senescent phenotype and could alter adipocyte functions. We aimed to determine the contribution of VAT-ECs to adipocyte dysfunction related to inflammation and to rescue these alterations by an...
متن کاملAdipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation
Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insul...
متن کامل